Paper-Conference

Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search
Large Language Models (LLMs) are increasingly capable but often require significant guidance or extensive interaction history to perform effectively in complex, interactive environments. Existing methods may struggle with adapting to new information or efficiently utilizing past experiences for multi-step reasoning without fine-tuning. We introduce a novel LLM agent framework that enhances planning capabilities through in-context learning, facilitated by atomic fact augmentation and a recursive lookahead search. Our agent learns to extract task-critical “atomic facts” from its interaction trajectories. These facts dynamically augment the prompts provided to LLM-based components responsible for action proposal, latent world model simulation, and state-value estimation. Planning is performed via a depth-limited lookahead search, where the LLM simulates potential trajectories and evaluates their outcomes, guided by the accumulated facts and interaction history. This approach allows the agent to improve its understanding and decision-making online, leveraging its experience to refine its behavior without weight updates. We provide a theoretical motivation linking performance to the quality of fact-based abstraction and LLM simulation accuracy. Empirically, our agent demonstrates improved performance and adaptability on challenging interactive tasks, achieving more optimal behavior as it accumulates experience, showcased in tasks such as TextFrozenLake and ALFWorld.
Improving LLM Agent Planning with In-Context Learning via Atomic Fact Augmentation and Lookahead Search
EvoControl: Multi-Frequency Bi-Level Control for High-Frequency Continuous Control
High-frequency control in continuous action and state spaces is essential for practical applications in the physical world. Directly applying end-to-end reinforcement learning to high-frequency control tasks struggles with assigning credit to actions across long temporal horizons, compounded by the difficulty of efficient exploration. The alternative, learning low-frequency policies that guide higher-frequency controllers (e.g., proportional-derivative (PD) controllers), can result in a limited total expressiveness of the combined control system, hindering overall performance. We introduce EvoControl, a novel bi-level policy learning framework for learning both a slow high-level policy (using PPO) and a fast low-level policy (using Evolution Strategies) for solving continuous control tasks. Learning with Evolution Strategies for the lower-policy allows robust learning for long horizons that crucially arise when operating at higher frequencies. This enables EvoControl to learn to control interactions at a high frequency, benefitting from more efficient exploration and credit assignment than direct high-frequency torque control without the need to hand-tune PD parameters. We empirically demonstrate that EvoControl can achieve a higher evaluation reward for continuous-control tasks compared to existing approaches, specifically excelling in tasks where high-frequency control is needed, such as those requiring safety-critical fast reactions.
EvoControl: Multi-Frequency Bi-Level Control for High-Frequency Continuous Control